Stepping Up To STEMS

Charles Galindo Jr.
NASA-JSC/ ESCG / MEIT
The Problem

Many Students in U.S. pursuing science and engineering degrees are from other countries
(Rising Above the Gathering Storm Two Years Later, www.nap.edu/catalog/12537.html)

• The number of U.S. Engineering Ph.D.s are declining while foreign student numbers increase
 • Trend also seen in scientific disciplines and with students pursuing graduate degrees
 • Other countries are increasing their investments in higher education
 • Schools had been testing students in math and reading but not science

U.S. Student Ranking Out of 31 Countries
(Organization for Economic Cooperation and Development)

• 15th in reading
• 19th in math
• 14th in science

Performance at Proficient Level in Science
(The STEM Crisis, National Math and Science Initiative)

• 29% of 4th grade students
• 33% of 8th grade students
• 18% of 12th grade students

Teachers who did not major in the subject in college or are not certified to teach it

• Taught 1/3rd of high school students enrolled in mathematics
• Taught 2/3rds of high school students enrolled in physical sciences
The Step Process of Science

• Technology advancements are based on progressive steps in science and engineering that build upon previous experience
 – Learn steps in making discoveries through observation and scientific inquiry
 – Develop investigative skills through laboratory experiences
 – Develop communication and organizational skills
 – Work with trained mentors to run thematic programs and encourage scientific thinking and team work

• Success in STEM education is tied to continuously building science and technology skills early on and throughout a student’s educational career
 – Participation in short exposure STEM activity programs (aha or awareness moments)
 – Participation in sustained STEM programs (continuous exposure and loss of fear factor)
 – Participation in the investigation of authentic science projects with scientists as mentors

• A teacher must also have mastered a number of progressive steps through their education and personal authentic science experiences
 – Research requires hands-on experience
 – Keep up technological advancements and new discoveries
Parent, Family and Community Involvement

• **Parents are key to the success of a student’s STEM career**
 – Develop an understanding of the significance of STEM
 • Participation in short term STEM programs with their child
 – Learn communication via computer skills and online knowledge
 • Scholarship and University applications are on line
 • Many schools now post student work and progress on line

• **Family involvement contributes to early exposure to STEM**
 – Allows parents greater freedom to participate
 – Develops interest/awareness in a subject previously not known before
 – Provides loss of fear of new subjects and they all have fun!

• **Community Involvement**
 – Allows for exposure to applied science and engineering
 – Develops buy-in from companies and a giving back attitude
 – Allows for the development of the communities own workforce
 – Allows for cultural understanding
Model Programs

- **UT Brownsville’s STEMS Program (UTB STEM)**
 - Exposes students to field science through outdoor experiences
 - Developed a STEM pipeline (middle school through university)
 - Takes students out of their comfort zone

- **NASA Space Science Day (NSSD)**
 - Trains upper level High School - University students to be mentors to young students
 - Trains teachers to use NSSD hands-on activities year-long to sustain learning
 - Exposes middle school students to NASA’s mission in a fun and participatory venue
 - Exposes community to NASA’s mission

- **Texas Valley Communities Foundation ENCORE Program**
 - Develops partnerships with industry, educational facilities and community
 - Exposes middle school students to college life and the latest STEM technology
 - Creates a partnership with both parents and students

- **NASA y Tu**
 - Developed downloadable 30-second educational video segment in Spanish for web and aired on Univision
 - Highlights interviews with NASA Hispanic astronauts, engineers and scientists,
 - Contains background information, educational resources for educators and students
 - Contains NASA activities and opportunities for student participation

- **NASA’s Career Exploration Program (CEP), Intern and Cooperative Education Programs**
 - Sustained mentorship of minority/underrepresented high school and university students
Conclusions

• There is a critical need for STEM qualified workers who are US citizens that requires innovative solutions

• Training, mentorships and hands-on experiences are a must

• Training and exposure to STEM programs should be a fun learning experience to demystify science – and build an ‘I can do it’ attitude

• Global participation requires a well trained multilingual – multicultural workforce

• Funding for sustainable programs vs. short term programs